Gradings of Non-graded Hamiltonian Lie Algebras

نویسندگان

  • A. CARANTI
  • S. MATTAREI
چکیده

A thin Lie algebra is a Lie algebra graded over the positive integers satisfying a certain narrowness condition. We describe several cyclic grading of the modular Hamiltonian Lie algebras H(2 : n;ω2) (of dimension one less than a power of p) from which we construct infinite-dimensional thin Lie algebras. In the process we provide an explicit identification of H(2 : n;ω2) with a Block algebra. We also compute its second cohomology group and its derivation algebra (in arbitrary prime characteristic).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graded Simple Lie Algebras and Graded Simple Representations

For any finitely generated abelian group Q, we reduce the problem of classification of Q-graded simple Lie algebras over an algebraically closed field of “good” characteristic to the problem of classification of gradings on simple Lie algebras. In particular, we obtain the full classification of finite-dimensional Q-graded simple Lie algebras over any algebraically closed field of characteristi...

متن کامل

Fine Gradings on Simple Classical Lie Algebras

The fine abelian group gradings on the simple classical Lie algebras (including D4) over algebraically closed fields of characteristic 0 are determined up to equivalence. This is achieved by assigning certain invariant to such gradings that involve central graded division algebras and suitable sesquilinear forms on free modules over them.

متن کامل

Classification of Good Gradings of Simple Lie Algebras

We study and give a complete classification of good Zgradings of all simple finite-dimensional Lie algebras. This problem arose in the quantum Hamiltonian reduction for affine Lie algebras.

متن کامل

Fine Gradings of Low-Rank Complex Lie Algebras and of Their Real Forms⋆

In this review paper, we treat the topic of fine gradings of Lie algebras. This concept is important not only for investigating the structural properties of the algebras, but, on top of that, the fine gradings are often used as the starting point for studying graded contractions or deformations of the algebras. One basic question tackled in the work is the relation between the terms ‘grading’ a...

متن کامل

Graded Contractions of Bilinear Invariant Forms of Lie Algebras

ABSTRACT. We introduce a new construction of bilinear invariant forms on Lie algebras, based on the method of graded contractions. The general method is described and the Z2-, Z3-, and Z2 ⊗ Z2-contractions are found. The results can be applied to all Lie algebras and superalgebras (finite or infinite dimensional) which admit the chosen gradings. We consider some examples: contractions of the Ki...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008